Novel Cerebrosides Isolated from the Fermentation Mycelia of *Tuber indicum*

by Yuan-Yuan Li^a)^b), Ping Liu^a), Yang Tang^a), Hong-Mei Li^a), Ya-Ling Tang^c), Xin-Hua Liang^c), and Ya-Jie Tang^{*a})^d)

^a) Key Laboratory of Fermentation Engineering (Minister of Education), Hubei University of Technology, Wuhan 430068, P. R. China (phone/fax: +86-27-88015108; e-mail: yajietang@hotmail.com)
^b) Research Group for Bioactive Products, Department of Biology & Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, P. R. China

^c) State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, P. R. China

^d) Laboratory of Synthetic Biology, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, P. R. China

The four new cerebrosides 1-4 possessing a unique C₁₈ 9-methylsphinga-4,8-dienine-related moiety and a cyclic octapeptide, **5**, possessing alternating proline and glycine moietes were isolated from the *Tuber indicum* fermentation mycelium. Their structures were established on the basis of a spectroscopic analysis including NMR and HR-ESI-MS, as well as an acidic methanolysis experiment. To the best of our knowledge, the cerebrosides identified in the present study are quite different from those isolated from *Tuber indicum* fruiting bodies. Additionally, it was the first time that a cyclic peptide was isolated from the *Tuber* genus.

Introduction. – Truffles, the hypogeous fruiting bodies belonging to the *Tuber* species, are a precious and expensive delicacy in the famous French and Italian cuisines. Because of the decrease in the natural production and worldwide increase of demand, submerged fermentation is viewed as a potential way to produce *Tuber* mycelia, which could be considered as an alternative resource for its fruiting bodies [1][2]. For a better understanding of this alternative resource, our group has identified and assayed some known compounds from the *Tuber* fermentation mycelia, such as volatile organic compounds [3][4], hydrosoluble nucleosides [5], and fatty acids [6]. In this study, we aim to phytochemically search for some new compounds with special chemical structures from the *Tuber* fermentation mycelium. Through solvent partition and repeated column chromatography, compounds 1-5 (*Fig. 1*) were isolated, and their structures were identified. Compounds $1-4^1$ were cerebrosides, while **5** was a cyclopeptide. To the best of our knowledge, cerebrosides 1-4 are new compounds, and a cyclic peptide, *i.e.*, **5**, was isolated from the *Tuber* genus for the first time.

Results and Discussion. – An AcOEt extract (100 g) of the cultured mycelia was separated by column chromatography and semi-preparative HPLC to afford the new compounds 1-4, which were supposed to have analogous chemical skeletons, besides the known cyclopeptide 5.

¹⁾ Arbitrary atom numbering; for systematic names, see *Exper. Part.*

^{© 2013} Verlag Helvetica Chimica Acta AG, Zürich

Fig. 1. Compounds 1-5 isolated from the fermentation mycelia of Tuber indicum

Compound 1 was a white amorphous powder, whose molecular formula was determined as $C_{43}H_{79}NO_9$ by HR-ESI-MS (m/z 776.6001 ($[M + Na]^+$, $C_{43}H_{79}NNa O_9^+$). The IR spectrum of **1** showed absorption bands of OH groups at 3396 cm⁻¹, a glycoside moiety (C-O) at 1083 cm⁻¹, a secondary amide group at 1536 and 1640 cm⁻¹, long aliphatic chains at 2921, 1468, and 721 cm⁻¹, and an amide carbonyl group at 1644 and 1678 cm⁻¹. The ¹H- and ¹³C-NMR spectra (*Table*) including the DEPT data further indicated that **1** contained one amide carbonyl group (δ (C) 174.2), five olefinic CH groups (δ (C) 123.7, 127.8, 129.8, 133.3, and 133.6), one quaternary olefinic C-atom $(\delta(C) 135.6)$, a series of oxygenated C-atoms $(\delta(C) 61.5, 68.8, 70.4, 71.7, 72.9, 73.8, 76.7, 7.6)$ 76.7, and 103.5), two terminal Me groups (δ (H) 0.88 (t, J = 13.8 Hz, 6 H)), and one allylic Me group ($\delta(H)$ 1.58 (s). For a better understanding of the detailed planar structure of 1, 2D-NMR experiments including HMBC and ¹H,¹H-COSY were performed (Fig. 2). A series of HMBCs, including $\delta(C)$ 103.5 (C(1''))/ $\delta(H)$ 3.18 $(H-C(2'')), \delta(C) 76.7 (C(3''))/\delta(H) 3.18 (H-C(2'')), \delta(C) 73.8 (C(4''))/\delta(H) 3.26$ $(H-C(5'')), \delta(C)$ 76.7 $(C(5''))/\delta(H)$ 3.66 and 3.85 $(H_a-C(6''))$ and $H_b-C(6'')),$ confirmed the hexose residue in the molecule. The cross-peak $\delta(C)$ 103.5 (C(1''))/ $\delta(H)$ 4.11 and 3.69 (H_a-C(1) and H_b-C(1)) further suggested that the hexose residue was attached to a long-chain base at C(1). The ¹H,¹H-COSY cross-peaks, including δ(H) 5.46 (H–C(4))/5.70 (H–C(5)), 5.70 (H–C(5))/2.02 (CH₂(6)), 2.02 (CH₂(6))/5.13 (H-C(8)), and 2.02 $(CH_2(7))/5.13$ (H-C(8)), unambiguously assigned the position of the C=C bonds between C(4) and C(5) and C(8) and C(9) of the long-chain base. Additionally, the position of a Me group at C(9) was also evidenced by the HMBC spectrum, in which the allylic Me group at $\delta(H)$ 1.58 (Me(18)) was correlated with the olefinic C-atoms at $\delta(C)$ 123.7 (C(8)) and 135.6 (C(9)) and the CH₂ group at $\delta(C)$ 39.6 (C(10)). The assignment of an OH group at C(3) was supported by the HMBCs $\delta(H)$ 4.11 (H–C(3))/ δ (C) 133.6 (C(4)) and 129.8 (C(5)). Finally, because the OH group at $\delta(H)$ 4.42 (H–C(2')) displayed an HMBC cross-peak with the C=O group at $\delta(C)$ 174.2

	Table. ¹ H- and	¹³ C-NMR	Data (600 and 125 MHz,	resp.; CD ₃ C	D) of Compounds 1-4.	δ in ppm, .	/ in Hz.	
Position	1		2		3		4	
	φ(H)	δ(C)	δ(H)	δ(C)	φ(H)	δ(C)	δ(H)	ð(C)
Long-chain base:								
$H_a-C(1)$	4.11 (overlap)	68.8	4.09 (overlap)	70.4	4.09 (overlap)	6.69	4.07 (overlap)	68.6
$H_{b}-C(1)$	3.69 (dd, J = 10.3, 3.6)		3.70 (overlap)		$3.69 \ (dd, J = 10.2, 3.6)$		3.69 (dd, J = 10.2, 3.6)	
H-C(2)	3.94 - 3.96 (m)	53.4	3.97 - 4.01 (m)	55.3	3.97 (overlap)	54.8	3.97 (overlap)	53.5
H-C(3)	4.11 (overlap)	70.4	4.14 (overlap)	72.2	4.11 (overlap)	71.8	4.11 (overlap)	70.5
H-C(4)	5.46 (dd, J = 14.4, 7.2)	133.6	5.44 (overlap)	135.4	$5.46 \ (dd, J = 15.0, 7.2)$	134.9	5.46 (dd, J = 15.0, 7.2)	133.4
H-C(5)	$5.70 \ (dd, J = 15.0, 6.0)$	129.8	5.71 - 5.73 (m)	131.8	5.72 (dd, J = 15.6, 6.0)	131.3	5.72 (dd, J = 15.6, 6.0)	129.9
$CH_2(6)$	2.02 (overlap)	31.9	2.05 (overlap)	33.7	2.02 (overlap)	33.3	2.05 (overlap)	32.6
$CH_2(7)$	2.02 (overlap)	27.6	2.05 (overlap)	29.4	2.02 (overlap)	31.0	2.05 (overlap)	27.5
H–C(8)	5.13 (br.)	123.7	5.14 (br.)	125.5	5.12 (br.)	125.5	5.11 (br.)	123.6
C(9)		135.6		137.4		137.0		136.3
$CH_2(10)$	1.96(t, J = 14.4)	39.6	1.97 (t, J = 15.0)	41.4	1.96 $(t, J = 13.8)$	40.9	1.96(t, J = 15.0)	39.5
$CH_2(11)$	1.36 - 1.38 (m)	27.9	$1.37 - 1.40 \ (m)$	29.8	1.36 - 1.39 (m)	29.3	$1.35 - 1.40 \ (m)$	27.9
$CH_2(12)-CH_2(16)$	1.27 (overlap)	22.5 - 31.	8 1.27 (overlap)	24.4 - 31.4	1.27 (overlap)	23.9 - 31.8	1.27 (overlap)	22.5 - 29.5
Me(17)	0.88 (t, J = 13.8)	13.2	0.89 (t, J = 13.8)	15.1	0.88(t, J = 13.8)	14.6	0.88(t, J = 14.4)	13.2
Me(18)	1.58(s)	14.9	1.58(s)	16.8	1.58(s)	16.3	1.58(s)	14.9
Acyl:								
C(1')		174.2		175.3		177.4		176.0
H–C(2')	$4.42 \ (d, J = 5.4)$	71.7	$4.43 \ (d, J = 4.8)$	73.7	3.97 (overlap)	73.1	3.97 (overlap)	71.8
H-C(3')	5.49 (dd, J = 15.0, 6.0)	133.3	$5.49 \ (dd, J = 15.0, 6.0)$	135.3	2.04 (overlap)	36.0	2.05 (overlap)	34.7
H-C(4')	$5.82 \ (dd, J = 15.0, 6.6)$	127.8	$5.82 \ (dd, J = 15.0, 6.6)$	129.7				
$CH_2(5' \text{ to } n') \text{ or }$	1.27 (overlap)	22.5-31.	8 1.29 (overlap)	24.4 - 31.4	1.27 (overlap)	26.4 - 31.8	1.27 (overlap)	22.5-29.5
$CH_2(4' \text{ to } n')^a)^b)$								
$Me(n'+1)^{(b)}$	$0.88 \ (t, J = 13.8)$	13.2	0.89 (t, 13.8)	15.1	$0.88 \ (t, J = 13.8)$	14.6	0.88(t, J = 14.4)	14.9
H_C(1")	4.75 (d I - 7.8)	103 5	4 27 (A I - 7 8)	105 4	4.75 (d I - 7.8)	104.9	4.75 (d I - 7.8)	103 5
	$\frac{1}{2}$ $\frac{1}$	0.02	320(44 I - 168 84)	L V L	3 17 (JA I - 168 78)	C 2L	$\frac{1}{2}$ $\frac{1}$	0.02
	2.10 (uu, J - 10.0, 1.0) 2.2A (JJ I - 16.0 0 A)	1.31	2.20 (uu, $J = 10.0$, 0.1) 2.27 2.25 (ur)	201	2.17 (uu, $J = 10.0$, 7.0) 2 22 (JJ I = 16.0 0 A)	701	2.17 (m, $J = 10.0, 5.0$) 2.24 (JJ $I = 16.0, 0.1$)	0.71
	2.24 (uu, J = 10.0, 0.4) 2.28 (overlan)	73.8	(111) CCC-2CC 3 70 (metalon)	75.6	2.20 (au, J = 10.0, 0.4)	1.0.1	3.04 (<i>uu</i> , <i>J</i> = 10.0, 0.4) 3.70 (overlan)	73.8
							J.27 (UVCIIAP)	0.01
H-C(5")	3.26 (overlap)	/.0/	3.27 (overlap)	/8.0	3.26 (overlap)	18.2	3.26 (overlap)	/0.8
$H_a-C(6'')$	$3.66 \ (dd, J = 12.0, 4.8)$	61.5	$3.66 \ (dd, J = 11.4)$	63.3	3.65 (dd, J = 12.0, 4.8)	62.9	3.65 (dd, J = 12.0, 4.2)	61.5
$H_{\rm b}-C(6'')$	3.85 (d, J = 12.0)		3.86 (d, J = 11.4)		3.85 (d, J = 10.8)		3.85 (d, J = 12.0)	
a) $CH_2(5' \text{ to } n')$ for	1 and 2 , and $CH_2(4' \text{ to})$	<i>n</i> ′) for 3 a	nd 4 . ^b) $n' = 18$ for 1 , $n' =$	17 for 3 , ar	id $n' = 20$ for 2 and 4 .			

704

Helvetica Chimica Acta – Vol. 96 (2013)

Fig. 2. Key features observed in the HMBC ($H \rightarrow C$) and ${}^{1}H$, ${}^{1}H$ -COSY (—) plot of compound $\mathbf{1}^{1}$)

(C(1')) and ¹H,¹H-COSY cross-peaks with the olefinic CH groups at δ (H) 5.49 (H–C(3')) and 5.82 (H–C(4')), a fatty 2-hydroxyall-3-enoic acid moiety was suggested to exist in the molecule. Based on the above conclusions, compound **1** was considered as a cerebroside with a constitution similar to asperamide B (=(2*R*,3*E*)-*N*-{(1*S*,2*R*,3*E*,7*E*)-1-[(β -D-glucopyranosyloxy)methyl]-2-hydroxy-8-methylnonadeca-3,7-dien-1-yl}-2-hydroxyhexadec-3-enamide) [7] and cerebroside A (=(2*R*,3*E*)-*N*-{(1*S*,2*R*,3*E*,7*E*)-1-[(β -D-glucopyranosyloxy)methyl]-2-hydroxy-8-methylheptadeca-3,7-dien-1-yl}-2-hydroxyhexydec-3-enamide) [8], both of which were isolated from the *Pachybasium* species. To establish the chain length of the fatty acid and sphingosine-related moieties (sphingenine = sphingosine = (2*S*,3*R*)-2-aminooctadec-4-ene-1,3-diol) and the configuration of the sugar moiety, **1** was subjected to acidic methanolysis to provide three fractions containing a fatty acid methyl ester **1a**, a sphingoid base **6**, and a methyl glycoside **7** (*Scheme*). The fraction containing **1a** was analyzed by GC/MS which revealed the characteristic fragment-ion peaks at *m*/z 326 (*M*⁺) and 267 ([*M* – COOMe]⁺), suggesting the presence of a C₁₉ fatty acid moiety in **1**. The fraction

containing 6, analyzed by LC/ESI-MS, showed the quasi-molecular ion of the main peak at m/z 298 ($[M+H]^+$), indicating that 18 C-atoms were contained in the sphingoid-base molety of **1**. Compound **7** had an optical rotation $[\alpha]_{25}^{25} = +75.6$ (c = 0.2, MeOH), which was quite near to that of methyl β -D-glucoside ($[\alpha]_{25}^{25} = +77.4$ (c = 0.2, MeOH) [9], suggesting that the hexose contained in 1 was a β -D-glucose residue. The coupling constant J = 7.8 Hz (*Table*) for the anomeric proton H–C(1") also supported this conclusion [7][10]. The configuration of **1** was deduced by comparing the NMR and optical rotation data with those of analogs in [7][9][11][12]. Except for the overlap of the proton signals of H_a-C(1) and H-C(3), H_a-C(1) (δ (H) 4.11 (overlap)) and other H-atoms, including H_{b} -C(1) (δ (H) 3.69 (*dd*, *J* = 10.3, 3.6 Hz)), H-C(2) ((δ (H) 3.94–3.96 (m)), H–C(3) (δ (H) 4.11 (overlap)), and H–C(2') (δ (H) 4.42 (d, J= 5.4 Hz)), presented chemical shifts and coupling constants very similar to those of asperamide B [7]. Furthermore, the specific optical rotation of 1 ($[\alpha]_D^{25} = -1.8$) was also very close to that of asperamide B ($[\alpha]_{D}^{25} = -1.2$) [7]. Therefore, **1** may contain the same $(2S,2'R,3R)^1$) moiety as that present in asperamide B [7]. The geometry of the C=C bonds of 1 was established by comparing its NMR data with literature: the values of the vicinal coupling constants were J = 15.0 Hz for the protons of CH(4)=CH(5) and CH(3')=CH(4') compatible with $(3'E,4E)^1$ configuration [12][13]. Additionally, according to previous experiences, an Me group at an (E)-C=C bond always appears at $\delta(C)$ 15.4, while that at to a (Z)-C=C bond appears at $\delta(C)$ 22.7 [9]. Thus, the chemical shift of Me(18) at $\delta(C)$ 14.9 (*Table*) indicated that the C(8)=C(9) bond was (E)-configured. Putting all these points together, the structure of 1 was established as (2S,3R,4E,8E)-2-{[(2R,3E)-2-hydroxynonadec-3-enoyl]amino}-9-methylheptadeca-4,8-diene-1,3-diol 1-(β -D-glucopyranoside)¹).

The molecular formula of **2** was determined as $C_{45}H_{83}NO_9$ by HR-ESI-MS (m/z 782.6108 ([M + H]⁺, $C_{45}H_{84}NO_9^+$)). No significant difference was found in the IR and NMR spectra of **1** and **2** (*Table* and *Exper. Part*). This indicates that **2** is an analogue of **1**. Compounds **1** and **2** only differed from each other in the different number of C-atoms in the aliphatic fatty acid chain. The acidic methanolysis of **2** (*Scheme*) revealed the characteristic fragment **6** arsing from of the sphingoid-base moiety by LC/ESI-MS (m/z 298 ([M + H]⁺), while the characteristic fragment **2a** arising from the fatty acid moiety was determined by GC/MS (m/z 354 (M^+) and 295 ([M - COOMe]⁺)). These results indicated that **2** contained the same sphingosine-related moiety as **1**, while 21 C-atoms were present in its fatty acid moiety. Therefore, compound **2** was established as ($2S_{3R}, 4E_{8}E$)-2-{(2R, 3E)-2-hydroxyheneicos-3-enoyl]amino}-9-methylheptadeca-4,8-diene-1,3-diol 1-(β -D-glucopyranoside)¹).

The molecular formula of **3** was determined as $C_{42}H_{79}NO_9$ by HR-ESI-MS (m/z 742.5345 ($[M+H]^+$, $C_{42}H_{80}NO_9^+$)). The ¹H- and ¹³C-NMR spectra of **3** (*Table*) were almost the same as that of **1** and **2**, except for the absence of one C=C bond. The acidic methanolysis (*Scheme*) showed that compound **3** contained the same sphingosine-related and sugar moiety as **1** and **2** and that the fatty acid moiety was derived from a saturated aliphatic acid. GC/MS Analysis of **3a** revealed characteristic ions at m/z 314 (M^+) and 255 ($[M - COOMe]^+$), confirming proved the existence of a saturated fatty acid moiety, *i.e.*, 2-hydroxyoctadecanoyl, in **3**. Therefore, compound **3** was established as ($2S_3R_4E_8E_9$)-2-{(2R)-2-hydroxyoctadecanoyl]amino}-9-methylheptadeca-4,8-diene-1,3-diol 1-(β -D-glucopyranoside)¹).

The molecular formula of **4** was determined as $C_{45}H_{85}NO_9$ by HR-ESI-MS (m/z 784.6273 ($[M + H]^+$, $C_{45}H_{86}NO_9^+$)). As shown in the *Table*, the ¹H- and ¹³C-NMR spectra indicated that **4** was an analog of **1**–**3**. In addition to that, compound **4** contained only two C=C bonds. The acidic methanolysis (*Scheme*) showed that compounds **3** and **4** were different from each other only in the chain length of the fatty acid moiety. The identified characteristic ion of **4a** in the GC/MS (m/z 356 (M^+) and 297 ($[M - COOMe]^+$)) further indicated that the fatty acid moiety contained 21 C-atoms. Therefore, the structure of **4** was established as ($2S_3R_4E_8E_2$)-2-{($2R_2$ -hydroxyheneicosanoyl]amino-9-methylheptadeca-4,8-diene-1,3-diol 1-(β -D-glucopyranoside)¹).

Thus from the T. indicum fermentation mycelia, four novel cerebrosides were isolated, and their structures were identified. Their common characteristic is that they all contained a C₁₈9-methylsphinga-4.8-dienine-related and β -D-glucopyranosyl moiety (sphinga-4,8-dienine = (2S,3R,4E,8E)-2-aminooctadeca-4,8-diene-1,3-diol). They differed from each other in their fatty acid moiety with either a different number of C=C bonds or with a different chain length. Although some similar cerebrosides or ceramides have been isolated from T. indicum fruiting bodies, their reported structures are different from those of the cerebrosides investigated in this study by the number and position of C=C bonds and by the chain length of the sphingoid-base or fatty acid moiety [14]. Besides cerebrosides, the cyclic octapeptide 5 composed of L-proline and glycine was also isolated, and its structure was identified as cyclo(L-Pro-Gly)+ based on the previously described spectral data [15]. To the best of our knowledge, it is the first time that a cyclic peptide has been found in the Tuber genus. Furthermore, it is very interesting that although *Tuber indicum* belongs to a higher fungus, compounds 1-5were more similar to the constituents isolated from lower organisms, including the unique marine protist Thraustochytrium globosum [16], the marine sponge Prosuberites laughlini [17], the marine fungus Aspergillus niger EN-13 [7], an imperfect fungus Pachybasium sp. [8], and the basidiomycetes Polyporus ellisii and Cortinarius umidicola [12].

Financial support from the National Natural Science Foundation of China (NSFC, projects No. 20976038 and 21176059), the Key Project of Chinese Ministry of Education (project No. 210132), the Hubei Provincial Natural Science Foundation for Innovative Research Team (project No. 2008CDA002), the Scientific Research Key Project of Hubei Provincial Department of Education (project No. 220101401), the Discipline Leader Project of Wuhan Municipality (project No. 200951830553), the Key Technology R&D Program of Wuhan Municipality (project No. 201120822280-2), the Open Project Programs for the Key Laboratory of Fermentation Engineering (Ministry of Education), the National Key Laboratory of Biochemical Engineering (project No. 2010KF-06), and the State Key Laboratory of Bioreactor Engineering is gratefully acknowledged. Y.-J.T. also thanks the Chutian Scholar Program (Hubei Provincial Department of Education, China; 2006).

Experimental Part

General. All solvents of anal. grade were purchased from the *BoDi Chemical Factory* (Tianjin, China). Colum chromatography (CC): silica gel (flash CC; SiO₂; (200–300 mesh; *Qingdao Marine Chemical Factory* (Qingdao, China)); *Sephadex-LH-20* gel (*Amersham Pharmacia Biotech China Ltd.* (Shanghai, China)). TLC: SiO₂ G (*Qingdao Marine Chemical Factory*); pre-coated SiO₂ G plates (*Merck Inc.* (Darmstadt, Germany)). Prep. medium-pressure liquid chromatography (MPLC): *Büchi-B-608*

system (Flawil, Switzerland). Prep. HPLC: *Waters-600* instrument coupled with a 2487 multiple-wave detector; *ODS* column (10 × 250 mm, 5 µm; *Agela Technologies Inc.* (Beijing, China)); 100% MeOH as mobile phase (4 ml/min). Optical rotations: *Perkin-Elmer-314* polarimeter. IR (KBr) Spectra: *Nicolet-Nexus-670* FT-IR spectrometer; $\tilde{\nu}$ in cm⁻¹. ¹H-, ¹³C-, and 2D-NMR Spectra: *Varian-Mercury* NMR instrument (600 and 400 MHz); δ in ppm rel. to Me₄Si as internal standard, *J* in Hz. HR-ESI-MS: *Bruker-Bio-TOF-Q-plus* mass spectrometer (*Bruker Daltonics Ltd.*, Coventry, UK). GC/ESI-MS: *Shimadzu-GC/MS-QP-2010-plus* mass spectrometer (Tokyo, Japan) and *Agilent-7890A* GC system equipped with a 5975C quadrupole MS detector (*Agilent Technologies, Inc.*, CA, USA). LC/ESI-MS: *Agilent-1200* HPLC system equipped with an ion-trap MS (*Agilent Technologies, Inc.*, CA, USA).

Mycelia Material. The strain of *Tuber indicum* was purchased from the Mianyang Institute of Edible Fungi (Sichuan, China). Fermentation mycelia were cultured in our laboratory according to the procedure described previously [1][2]. The harvested mycelia were rinsed with deionized water to remove the culture medium. The clean mycelia was stored at -20° before it was used.

Extraction and Isolation. First, the mycelia (*ca.* 3 kg) was extracted by EtOH, and then the extract was divided into three fractions by extracting with hexane, AcOEt, and 95% EtOH. The AcOEt fraction (100 g) was subjected to CC (SiO₂, CHCl₃/MeOH 99:1, 90:10, 85:15, 80:20, and 70:30): *Fractions A* – *F* (TLC monitoring). *Fr. D* (*ca.* 5.0 g) was subjected to CC (SiO₂, CHCl₃/MeOH 85:15): **5** (15.0 mg) and a mixture of cerebrosides (*ca.* 35.3 mg). The cerebroside mixture was further separated by semi-prep. HPLC: **1** (15.2 mg), **2** (10.2 mg), **3** (3.2 mg), and **4** (5.1 mg).

 $(2R,3E)-N-{(IS,2R,3E,7E)-1-[(\beta-D-Glucopyranosyloxy)methyl]-2-hydroxy-8-methylhexadeca-3,7$ $dien-1-yl]-2-hydroxynonadec-3-enamide (1): Amorphous powder. [a]_{D}^{25} = -1.8 (c=0.2, MeOH). IR (KBr): 3396, 2921, 2985, 1640, 1536, 1467, 1082. ¹H- and ¹³C-NMR:$ *Table*. HR-ESI-MS: 776.6001 ([*M*+ Na]⁺, C₄₃H₇₉NO₉Na⁺; calc. 776.5653).

(2R,3E)-N-{(1S,2R,3E,7E)-1-[$(\beta$ -D-Glucopyranosyloxy)methyl]-2-hydroxy-8-methylhexadeca-3,7dien-1-yl]-2-hydroxyheneicos-3-enamide (2): Amorphous powder. $[a]_{D}^{25} = -2.0$ (c = 0.2, MeOH). IR (KBr): almost identical to that of **1**. ¹H- and ¹³C-NMR: *Table*. HR-ESI-MS: 782.6108 ($[M + H]^+$, $C_{45}H_{84}NO_{9}^+$; calc. 782.6146).

(2R)-N-{(1S,2R,3E,7E)-1-[(β -D-Glucopyranosyloxy)methyl]-2-hydroxy-8-methylhexadeca-3,7-dien-1-yl]-2-hydroxyoctadecanamide (3): Amorphous powder. [α]₂₅²⁵ = +0.8 (c = 0.2, MeOH). IR (KBr): almost identical to that of **1**. ¹H- and ¹³C-NMR: *Table*. HR-ESI-MS: 742.5345 ([M + H]⁺, C₄₂H₈₀NO₉⁺; calc. 742.5833).

(2R)-N-{(1S,2R,3E,7E)-1-[(β -D-Glucopyranosyloxy)methyl]-2-hydroxy-8-methylhexadeca-3,7-dien-1-yl]-2-hydroxyheneicosanamide (**4**): Amorphous powder. [a]_D²⁵ = +1.3 (c = 0.2, MeOH). IR (KBr): almost identical to that of **1**. ¹H- and ¹³C-NMR: *Table*. HR-ESI-MS: 784.6273 ([M+H]⁺, C₄₅H₈₆NO₉⁺; calc. 784.6303).

 $Cyclo(glycyl-L-prolylglycyl-L-prolylglycyl-L-prolylglycyl-L-prolylglycyl-L-prolyl) (Cyclo(L-Pro-Gly)_4; 5): Colorless amorphous powder. [a]_{25}^{25} = -60.2 (c = 0.2, CHCl_3). IR (KBr): 3204, 3113, 1678, 1644, 1457, 1304, 1296, 1005, 794, 500. ¹H-NMR: 1.86 (m); 2.01 (m); 2.32 (m); 3.50 (dd, J = 9.3, 4.5); 3.57 (dd, J = 9.6, 5.7); 3.83 (dd, J = 8.4, 2.1); 4.02 (overlap). ¹³C-NMR: 22.6; 28.7; 45.6; 46.9; 58.8; 163.7; 170.1. HR-ESI-MS: 617.3036 ([M + H]⁺, C₂₈H₄₁N₈O_8⁺; calc. 617.3047).$

REFERENCES

- [1] Y. J. Tang, L. L. Zhu, D. S. Li, Z. Y. Mi, H. M. Li, Process Biochem. 2008, 43, 576.
- [2] R. S. Liu, D. S. Li, H. M. Li, Y. J. Tang, Process Biochem. 2008, 43, 868.
- [3] Y. Y. Li, G. Wang, H. M. Li, J. J. Zhong, Y. J. Tang, Food Chem. 2012, 135, 2628.
- [4] Y. J. Tang, G. Wang, Y. Y. Li, J. J. Zhong, Anal. Chim. Acta 2009, 647, 40.
- [5] P. Liu, Y. Y. Li, D. J. Wan, Y. J. Tang, Anal. Chim. Acta 2011, 687, 159.
- [6] Y. Tang, Y.-Y. Li, H.-M. Li, D.-J. Wan, Y. J. Tang, J. Agric. Food Chem. 2011, 59, 4736.
- [7] Y. Zhang, S. Wang, X. M. Li, C. M. Cui, C. Feng, B. G. Wang, Lipids 2007, 42, 759.
- [8] R. D. Sitrin, G. Chan, J. Dingerdissen, C. DeBrosse, R. Mehta, G. Roberts, S. Rottschaefer, D. Staiger, J. Valenta, K. M. Snader, R. J. Stedman, J. R. E. Hoover, J. Antibiot. 1988, 41, 469.

- [9] J. K. Liu, L. Hu, Z. J. Dong, Lipids 2003, 38, 669.
- [10] X. Chen, Y. L. Wu, D. Chen, Tetrahedron Lett. 2002, 43, 3529.
- [11] J. H. Chen, G. Y. Cui, J. Y. Liu, R. X. Tan, Phytochemistry 2003, 64, 903.
- [12] J. M. Gao, Z. J. Dong, J. K. Liu, *Lipids* **2001**, *36*, 175.
- [13] Z. J. Zhan, J. M. Yue, J. Nat. Prod. 2003, 66, 1013.
- [14] J. M. Gao, W. M. Zhu, S. Q. Zhang, X. Zhang, A. L. Zhang, H. Chen, Y. Y. Sun, M. Tang, Eur. J. Lipid Sci. Technol. 2004, 106, 815.
- [15] V. Madison, M. Atreyi, C. M. Deber, E. R. Blout, J. Am. Chem. Soc. 1974, 96, 7566.
- [16] K. M. Jenkins, P. R. Jensen, W. Fenical, Tetrahedron Lett. 1999, 40, 7637.
- [17] J. Vicente, B. Vera, A. D. Rodríguez, I. Rodríguez-Escudero, R. G. Raptis, *Tetrahedron Lett.* 2009, 50, 4571.

Received May 8, 2012